Wednesday, November 27, 2019
Computers In Math Essays - Computer Arithmetic, Binary Arithmetic
Computers in Math Ever since the first computer was developed in the early 1900's the computer has been using math to solve most of it's problems. The Arithmetic and Logical unit helps the computer solve some of these problems. All type of math can be solved on computer's which it uses. Binary Arithmetic A computer understands two states: on and off, high and low, and so on. Complex instructions can be written as a combination of these two states. To represent these two conditions mathematically, we can use the digits 1 and 0. Some simple mathematical operations, such as addition and subtraction, as well as the two's complement subtraction procedure used by most computer's. Evaluating an Algebraic Function It is frequently necessary to evaluate an expression, such as the one below, for several values of x. y= 6x4+4x3-5x2+6x+4 First to start with developing the power's of x to perform the necessary multiplications by the coefficients, and finally produce the sum. The following steps are the way the computer "thinks" when it is calculating the equation. 1.Select x 2.Multiply x by x and store x2 3.Multiply x2 by x and store x3 4.Multiply x3 by x and store x4 5.Multiply x by 6 and store 6x 6.Multiply stored x2 by 5 and store 5x2 7.Multiply stored x3 by 4 and store 4x3 8.Multiply stored x4 by 6 and store 6x4 9.Add 6x4 10.Add 4x3 11.Subtract 5x3 12.Add 6x 13.Add 4 Binary Coded Decimal One of the most convenient conversions of decimal to binary coded decimal's is used today in present day computer's. BCD(Binary Coded Decimal) is a combination of binary and decimal; that is each separate decimal digit is represented in binary form. For example the chart below represents the Binary and Decimal conversions. Decimal Binary 0 0 1 1 2 10 3 11 4 100 5 101 6 110 7 111 8 1000 9 1001 10 1010 BCD uses one of the above binary representations for each decimal digit of a given numeral. Each decimal digit is handled separately. For example, the decimal 28 in binary is as follows: (28)10 = (11100)2 The arrangement in BCD is as follows: 2 8 0010 1000 Each decimal digit is represented by a four-place binary number. Direct Binary Addition In binary arithmetic if one adds 1 and 1 the answer is 10. The answer is not the decimal 10. It is one zero. There are only two binary digits in the binary system. Therefore when one adds 1 and 1, one gets the 0 and a carry of 1 to give 10. Similarly, in the decimal system, 5 + 5 is equal to zero and a carry of 1. Here is an example of binary addition: column 4 3 2 1 0 1 1 1 + 0 1 1 1 1 1 1 0 I n column 1, 1+1=0 and a carry of 1. Column 2 now contains 1+1+1. This addition, 1+1=0 carry 1 and 0+1=1, is entered in the sum. Column 3 now also contains 1+1+1, which gives a carry of 1 to column 4. The answer to the next problem is found similarly. 1 0 0 1 1 0 1 1 + 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 Direct Binary Subtraction Although binary numbers may be subtracted directly from each other, it is easier from a computer design standpoint to use another method of subtraction called two's complement subtraction. This will be illustrated next. However direct binary subtraction will be discussed. Direct Binary Subtraction is similar to decimal subtraction, except that when a borrow occurs, it complements the value of the number. Also that the value of the number of one depends on the column it is situated. The values increase according to the power series of 2: that is 20, 21,23, and so on, in columns 1, 2, 3 and so on. Hence, if you borrow from column 3 you are borrowing a decimal 4. ex column 3 2 1 1 1 0 - 1 0 1 0 0 1 In the example a borrow had to be made from column 2, which changed its value to 0 while putting decimal 2 (or binary 11) in column 1. Therefore, after the borrow the subtraction in column 1 involved 2-1=1; in column 2 we had 0-0=0; and in column 3 we had 1-1=0. If the next column contains
Sunday, November 24, 2019
Signs of the Times essays
Signs of the Times essays Electronic Commerce is defined by Websters Dictionary as using computer networks to conduct business, including buying and selling online, electronic funds transfer, business communications, and using computers to access business information resources. The Electronic Commerce Association describes electronic commerce as doing business electronically. More precisely we could describe electronic commerce as involving the exchange of information using a combination of structured messages (EDI), unstructured messages (e-mail and documents), data access and direct support for business processes across the value chain. The Internet is only a small fraction of e-commerce applications. Intranets, Electronic Data Interchange (EDI) and Enterprise Resource Planning (ERP) systems all contribute to business to business marketing, operations and financial services (Wareham, 2000). The Internet was designed to be used by government and academic users, but now it is rapidly becoming commercialized. It has on-line "shops", even electronic "shopping malls". Customers, browsing at their computers, can view products, read descriptions, and sometimes even try samples. They could pay by credit card, transmitting the necessary data by modem; but intercepting messages on the Internet is trivially easy for a smart hacker, so sending a credit-card number in an unscrambled message is inviting trouble. It would be relatively safe to send a credit card number encrypted with a hard-to-break code. That would require either a general adoption across the Internet of standard encoding protocols, or the making of prior arrangements between buyers and sellers. Both consumers and merchants could see a windfall if these problems are solved. For merchants, a secure and easily divisible supply of electronic money will motivate more Internet surfers to become on-line shoppers. Electronic money will also make it easier for smaller businesses to achieve a lev...
Thursday, November 21, 2019
Nursing Practice Guidelines and Theory Research Paper
Nursing Practice Guidelines and Theory - Research Paper Example Grand nursing theories possess the vast scope and propose broader concepts and suggestions. Such type of theories reveal and provide insights valuable for hospitals but are not intended for experimental testing. (Navahandi, 2006, 180) This minimises the chances of application of grand nursing theories for designing, demonstrating, and foreseeing nursing in some situations. Such type of theories are utilized for almost all levels of nursing. Middle-range nursing theories are not vast unlike grand nursing theories in scope and propose a valuable connection between nursing practice and grand nursing theories. Such theories present concepts and propositions at an inferior level of generalization and possess great scope for high trend of theory-based investigation and nursing practice strategies. (Warhurst, Grugulis and Keep, 2007) Nursing practice theories possess the narrowest scope and level of generalization and are designed to be utilized for only limited variety of nursing situations. Nursing practice theories offer frameworks for nursing intrusions, and foresee results and the effects of nursing practice. (Stelzer, 2008, 25) In the last 15 years, nursing in the United Kingdom have increased its reliance on skilled work groups or teams. Although the initial motivation for adoption of work groups and teams may be linked to well-publicised examples in other parts of the world, reports of many successful implementations in the United Kingdom have further spurred their adoption (Navahandi & Aranda, 2006, 160). The continuing importance in the practice environment was advanced by Jerry Junkins, CEO of Texas Instruments: "No matter what your business, these teams are the wave of the future" (Dumaine, 2008, p. 220).
Subscribe to:
Posts (Atom)